
Global Ocean Prediction Using HYCOM

Alan J. Wallcraft

Naval Research Laboratory

First Annual Cray Technical Workshop - USA

February 28, 2007



COMPUTATIONAL ASPECTS OF OCEAN MODELS

• Typical ocean model is 3-D Finite Difference

• Some of the characteristics of a 2-D problem

• Vertical scales much different from horizontal

◦ HYCOM 1/12◦ fully-global: 4500 x 3298 x 32

• 2-D domain decomposition for SPMD scalability

◦ Vertical dimension “on-chip”
− Often treated implicitly

• Fast surface gravity waves O(100m/s)

◦ O(100)x faster than advective and internal
gravity wave speeds

◦ Separate 2-D sub-problem
◦ Split-explicit or semi-implicit time step

• Static load balance based on land/sea mask

◦ 20% to 40% efficiency gain from skipping land



LIMITS ON OCEAN MODEL SCALABILITY

• 2-D sub-problem

◦ 2-D Halo exchanges and 2-D global sums
◦ Relatively little computational work
◦ Highly dependent on communication latency

• 3-D sub-problem

◦ 3-D Halo exchanges
◦ Still relatively little computational work

per halo exchange
◦ Still dependent on communication latency

• I/O

◦ Typically no overlap between I/O and
computations (today)

◦ Need fast synchronous reads and
asynchronous writes
− From system (e.g. MPI-2 I/O)
− At user level (e.g. via “coupler”)



PORTABLE LOW LATENCY COMMUNICATIONS

• If application programmers could target:

◦ low latency communication hardware
◦ low latency portable API

• This would:

◦ Reduce the need to “tune” codes
◦ Allow scaling to more processors
◦ Expand the range of practical algorithms

• At the high end of the HPC market:

◦ have memory-based low latency hardware
◦ no portable API to take full advantage of this

• Partitioned Global Address Space languages:

◦ CAF, Co-Array Fortran
◦ UPC, Unified Parallel C
◦ Titanium, based on Java

• CAF will be in the next Fortran standard

◦ MPI is so pervasive that we probably
need to mix CAF and MPI
− Implementation dependent



BIT-FOR-BIT MULTI-CPU REPRODUCIBILITY

• Repeating a single processor run:

◦ Produces identical results

• Repeating a multi-processor run:

◦ Produces different results
− Using either OpenMP or MPI
− e.g. fastest global sum is non-reproducible

◦ Unless programmer explicitly avoids
non-reproducible operations

• Two levels of reproducibility

◦ On the same number of processors
− Some scalable libraries provide this

◦ On any number of processors
− Only “safe” option for code maintenance
− Always requires careful programming
− Can be slower
− Is required for all operational ocean

prediction models (e.g. HYCOM)



HYBRID COORDINATE OCEAN MODEL (HYCOM)

• Developed from MICOM by a Consortium

◦ LANL, NRL, U. Miami

• Hybrid Vertical Coordinate

◦ “Arbitrary Lagrangian-Eulerian”, see:
Adcroft and Hallberg, O. Modelling 11 224-233.

◦ Isopycnal in open, stratified ocean
◦ Terrain-following in shallow coastal seas
◦ Z-level in mixed-layer and/or in unstratified

seas
◦ Dynamically smooth transition between

coordinate systems via the layered continuity
equation

◦ Isopycnals can intersect bathymetry by allow-
ing zero thickness layers (as in MICOM)

• Open Source ocean model

◦ Greatly increases size of user community
◦ Result is more capable and better tested model
◦ http://www.hycom.org



OCEAN PREDICTION USING HYCOM

• Both the Navy (NRL and NAVOCEANO) and
NOAA (NCEP) have selected HYCOM for their
next generation of Ocean Nowcasting and
Prediction systems

• See “Ocean Prediction” at http://www.hycom.org

◦ NRL has run an 1/12 ◦ (7 km) Atlantic
testbed weekly since 2003

◦ NOAA is operational daily in Atlantic
with 4km near-US resolution

• Navy operational system will be 1/12 ◦ (7 km
mid-latitude) fully global, including a coupled
sea-ice model (LANL’s CICE)

◦ Ocean array size: 4500 x 3298 x 32
◦ Runs on 784 processors (IBM P655+)
◦ Per model month:
− Run time: 21-23 wall hours

· 19-20 wall hours on 714 Cray XT3 cpus
− Daily fields: 525 GB (250 GB compressed)

◦ Ocean nowcast and prediction now runs daily
− Transitioned from R&D at end of FY07



DATA HANDLING

• Data (model output) handling is an often
overlooked issue

◦ Huge data sets
◦ Moving between compute engine and archive
◦ Size of long term archive

• We try to do as much post-processing as
possible as soon as the model run completes

◦ Before moving data to the archive system
◦ Different computational needs
− Fewer processors,

more memory per processor
◦ Single system with two kinds of nodes, or

two systems with a shared file-system

• Can’t do post-processing on a Cray XT3

◦ Move all files across network from ERDC to
NAVO
− Post-process on IBM P655+ at NAVO
− Archive at NAVO

◦ Transfer about 300 GB per wall day



DOMAIN DECOMPOSITION

• Split the domain into contiguous sub-domains

◦ Size each sub-domain for equal work and
minimal connectivity to other sub-domains

• Add a “halo” or “ghost cells” around each
sub-domain such that:

◦ If the halo is up to date:
− Sub-domain operations are independent

· Only using sub-domain and halo values

• Domain is distributed across the processors

◦ Program only has memory for one sub-domain
plus its halo

• Land can be a large fraction of the total grid

◦ Primary reason for different domain
decomposition strategies in ocean models

◦ Affects efficiency, not scalability



EQUAL-SIZED RECTANGULAR TILES

• Simplest scheme is equal-sized rectangular tiles

◦ Each tile has four neighbors
− Eight neighbors including halo corners

• Overall speed controlled by slowest tile

◦ Probably have an “all ocean” tile
− no advantage to avoiding land within a tile

• So, discard tiles that are entirely over land

◦ Relatively simple to implement
◦ Does not discard all land
◦ Better for large tile counts
◦ Ineffective on very small tile counts
◦ MICOM and NLOM



HYCOM’S DOMAIN DECOMPOSITION

• Decompose each axis separately

◦ Still get rectangular tiling
◦ All tiles in same row are equal height
◦ Two East-West neighbors
◦ Many North-South neighbors

• Modified equal-area tiling

◦ Discard all-land tiles
◦ Shift tiles to fit coastline
◦ Double-up tiles if less than half ocean
− must avoid land within the tile

◦ Compared to equal-area tiling:
− Up to 2x the memory requirement
− More expensive halo exchange
− Often significantly fewer tiles

• 6-element wide halo

◦ halo is “consumed” over several operations
◦ reduces the number of communication steps



MODIFIED EQUAL AREA TILING

36x32 = 1152 Tiles but only 781 Active
10% fewer than equal area tiling

Fully Global “Tripole” Grid
Logically rectangular, but with a special

halo exchange for the Arctic bi-polar patch



SCALABILITY TEST

• Explore scalability to 2,000 processors, of:

◦ 1/12◦ Global HYCOM (4500x3298x26)
− In DoD TI-0X benchmark suites

· Target of suite is 256 cpus
− A DoD Challenge project configuration

• Benchmark code “frozen” in 2000

◦ Use a recent HYCOM source code

• Benchmark run shorter than the typical run

◦ Ignore the start-up time before the first model
time step



INITIAL SCALABILITY TESTS

• On NAVO’s kraken (IBM P655+):

◦ Total I/O time is 88 to 96 seconds
◦ Without I/O the 1006 to 2040 speedup

would be 1.74x
◦ On 2040 cpus 15% of the time is I/O

MPI TASKS NODES WALL-TIME SPEED-UP
504 63 1515.1
1006 126 946.9 1.60x 504
2040 255 587.2 1.61x1006

• On ARL’s jvn (Linux Networx Xeon Cluster):

◦ Total I/O time is 284 to 336 seconds
◦ Without I/O the 1006 to 2040 speedup

would be 1.84x
◦ On 2040 cpus 35% of the time is I/O

MPI TASKS NODES WALL-TIME SPEED-UP
504 252 1867.0
1006 503 1209.2 1.54x 504
2040 1020 772.1 1.57x1006



SCALABILITY TEST ON CRAY XT3 AND IBM P575+

• On ERDC’s sapphire (Cray XT3)

• Slightly different test case, similar I/O needs

◦ Total I/O time is 280 to 310 seconds
◦ Without I/O the 1006 to 2040 speedup

would be 1.97x
◦ On 2040 cpus 34% of the time is I/O

• Lustre file-system performs similarly on JVN and
sapphire

MPI TASKS NODES WALL-TIME SPEED-UP
504 504 2321.9
1006 1006 1403.8 1.65x 504
2040 2040 841.6 1.67x1006

• On NAVO’s babbage (IBM P575+)

◦ Total I/O time is 22 to 24 seconds
◦ On 2040 cpus only 4% of the time is I/O

MPI TASKS NODES WALL-TIME SPEED-UP
504 504 2144.0
1006 1006 1165.2 1.84x 504
2040 2040 694.9 1.68x1006



HYCOM I/O

• Model is REAL*8, but I/O is big-endian REAL*4

• HYCOM does I/O one 2-D array at a time,
from the 1st task only

◦ Each I/O request is 56.6 MB
◦ Total I/O is about 11 GB
◦ Total I/O time of 90 seconds is 125 MB/s

• Gather onto 1st task was in REAL*8

◦ REAL*4 gather saved about 20%
◦ Included in above times

• MPI-2 I/O an obvious alternative:

◦ HYCOM arrays contain “holes” over land
− Must be filled by “data void”
− MPI-2 I/O allows gaps, but can’t fill them

◦ Do (MPI-2) I/O from one task per row
− On both kraken and jvn
− Speeds up reads, but not writes

· HYCOM does far more writes than reads



HYCOM I/O - FUTURE ENHANCEMENTS

• Best solution is user-level asynchronous I/O

◦ Dedicate enough processors to I/O so
that all writes can be buffered
− Size of buffer sets number of processors

◦ Overlap I/O with computation
− Fast I/O still required, since actual I/O

time sets lower limit on wall time
◦ Plan to implement using the Earth System

Modeling Framework (ESMF)



SUMMARY

• Low communication latency is one key to
good ocean model scalability

◦ MPI is not a low-latency API
◦ Co-Array Fortran is a better approach

• Bit for bit reproducible global sums are a
challenge

• I/O is a significant barrier to scalability

◦ Best solution is user-level asynchronous I/O

• Minimize data motion

◦ Run the model and pre/post processing on:
− Single machine with two kinds of nodes, or
− Two machines with a shared file-system


